
minecrawlers
Rising Star 2022

Kian Bennett
University of Portsmouth

Concept Outline

Planning and Pre-production

Source Control

Development Timeline

Project Difficulties

QA and Optimisations

Extending the Code Base

Final Reflection

Third Party/Premade Assets

Concept Outline

I really enjoy playing games which combine elements of multiple genres or classic games. Two examples

that immediately come to mind are Dota Auto Chess, which combines the MOBA genre with chess, and

RogueRis, which combines the dungeon crawling of a roguelike with the grid rotation and formation of

Tetris. I like that it provides players with familiar mechanics in a completely fresh setting.



The genre-fusion of Auto Chess (left) and RogueRis (right) were big inspirations for minecrawlers

I decided to take the top-down arena action gameplay of a twin-stick shooter and combine it with the

mechanics of minesweeper, in which each enemy would be made up of a grid of blocks - the player would

need to shoot the blocks without bombs and defuse those with bombs.

The procedural nature of the enemies would also provide an excellent opportunity to explore the

procedural animation of legs using inverse kinematics, something which I have been looking to learn

about for a while. I am fascinated by procedurally generated content and the ways it can enhance

gameplay and replayability while reducing time spent on hand-authored content.

Planning and Pre-production

I believe that two of my strengths in game development are polished, clean visuals and responsive

game-feel, so I planned my feature set with these in mind. My goal was to limit myself to one core

feature - shooting the minesweeper-style enemies - and get that as polished and as focused as I could. By

limiting my scope I could hopefully avoid feature creep and improve the core experience, at the expense

of adding multiple mechanics. This is something I’ve struggled with in past projects so I was sure to keep

this in mind at every stage of development.

I used a Trello board throughout the project to log my tasks and track my overall progress to make sure I

didn’t overrun or succumb to feature creep. By labelling my tasks I could see at a glance what areas of

the project needed the most attention and what I’d be working on that day.

Something different I tried this time was splitting my To Do categories into “Essential” and “Bonus” -

tasks that were essential to the core experience and those which would be nice to have only if time

allowed, respectively. This helped a lot with knowing which tasks to prioritise and where development

time would be best spent.



My Trello board with To Do Essential, To Do Bonus, In Progress, Bugs and Done card categories

Source Control

Early on in the project I got into the habit of committing my changes to Bitbucket every time I finished a

significant chunk of work. Fortunately I never needed to roll back my changes but if I did need to restore

from backup I would never lose more than a couple of days of work at any time.

My Bitbucket commit history



Development Timeline

Procedural Leg Animations

My goal with the leg animations was to have a simple 2-joint leg that would attach to some of the

outward faces of the enemy’s blocks, and would animate in a crawling, spider-like way. This was both a

core part of the game’s design and a completely new technique to me, so allocated a significant

proportion of development time to it. This is something that could be achieved with simple premade

animations, but as I wanted the enemies to be able to move in any direction (e.g. knockback from a

bullet), and for my own edification of the technique, I chose a procedural solution.

The first step (pun intended) was to set up the inverse kinematics for the leg. Fortunately, the solution

for two joints is much simpler than 3 or more joints, as there are only configurations of joint angles in

which the leg can reach the target, instead of infinite. I followed Alan Zucconi’s excellent guide Inverse

Kinematics in 2D to get the joint angles in the XY plane, then rotate the entire leg so it pointed toward

the target. This is perhaps less flexible than a true 3d solution, but it fit my needs and was more

approachable as a newcomer to the field.

When only two joints are needed, the problem is resolving the angles of a triangle. As the lengths of the ‘bones’ a
and c are fixed, we can use trigonometry to resolve the angles α and β (image credits: Alan Zucconi, 2018)

Once I had the joints correctly angled so the foot would reach the target position, it was time to set up

the step animation. I loosely followed the steps outlined by Codeer in their guide Unity procedural

animation tutorial (10 steps) - each leg has a target position that is fixed to the enemy body, and once the

distance from the foot to this position exceeds a certain threshold, it moves towards a point ahead of the

target position using Vector3.MoveTowards. To make the leg raise off the ground I calculated the

percentage distance from the previous foot position to the target position and used this to get a sine

wave: LegPosition.y = Params.StepHeight * Mathf.Sin(LegMovementPercentage *
Mathf.PI);

https://www.alanzucconi.com/2018/05/02/ik-2d-1/
https://www.alanzucconi.com/2018/05/02/ik-2d-1/
https://www.youtube.com/watch?v=e6Gjhr1IP6w
https://www.youtube.com/watch?v=e6Gjhr1IP6w


Each leg has a target position (red sphere) - once distance from this to the foot (red line) reaches a certain
threshold, the leg takes a step forward

Enemy block generation

Generating the bomb layout was fairly simple - I made an x by y grid then placed n bombs at random

points (the same as standard minesweeper. The challenge was then placing non-bomb blocks so that

there could be a continuous perimeter of numbers greater than or equal to one around the enemy.

I had a few rules that would be checked for each cell to see what should be placed there:

● If a cell has a bomb, add a box

● If a cell has no bomb, and all its neighbours are nearby at least 1 bomb, then add a box

● If all of a cell’s adjacent neighbours are bombs, then don’t add a box (to avoid the player being

unable to destroy it if it’s competely blocked in by bombs)

An example bomb layout (bombs are represented by red dots)

Although this ruleset is simple, I found it generally made for bomb layouts that played well as long as the

ratio between grid size and number of bombs isn’t too low or high - through experimentation I found that

a good number bombs is Sqrt(GridWidth * GridHeight) * 2 .

Placing eyes and legs on the enemy board

To get the possible position at which the legs and eyes could be placed, I first had to get a list of outward

box faces. For each face of each box, if it didn’t have a box adjacent to it in that direction it is considered

an outward face. To get the face in which to place the eyes, I sorted this list first by the z position to get

the frontmost faces, then by absolute x position to get the face closest to the centre.



To place the legs on the outward faces, I settled on simply adding a leg to every other outward face. This

generally works well but as the faces aren’t ordered by position along the perimeter this doesn’t always

result in an even spread. For now, ordering the outward faces is beyond the scope of the project.

Bomb indicator blocks

After spawning all boxes, if a cell doesn’t have a box but is adjacent to at least one bomb, a bomb

indicator is placed in that box. When the player aims at a box, the indicators within range are highlighted

to make it more obvious in the heat of battle.

Bomb indicators are placed to show how many bombs are nearby, just like traditional minesweeper

I initially struggled with the design of the bomb indicators. Since many were present they could easily

present too much visual noise. It took a lot of iteration to get the right balance of readability without

obscuring the enemy blocks.

Initial prototype of the bomb indicators, although they looked alright individually, were far too visually
obstructive when many were surrounding an entire enemy

Player movement and shooting

I purposefully kept the player’s design as simple as possible, so I could focus on the core mechanics and

hone the visuals. I added a few simple controls that could quickly add engagement and game-feel

without complicating the design and taking too much development time, such as dashing, delay between

switching aim types and an energy bar.

To add some ‘juice’ to the game and improve the game-feel, I added screen-shake, health bar shake, dust

particles when dashing and sound effects when lowering your weapon, running out of energy etc.



I used Unity’s LineRenderers to show the bullet and aim lines - the alpha of the aim line falls of towards the end
to produce a tapered effect

Online Leaderboard

I believe that adding online competition always does wonders to increase a game’s replayability and

longevity. To achieve this I used the free service Dreamlo to upload and retrieve high scores. I used

UnityWebRequest to send a request to Dreamlo’s REST API, and to upload the score with username

after the player dies, and display a response in a table in-game.

The pipe-delimited scores sent by Dreamlo by HTTP request (left), displayed in a table in-game (right)

Project Difficulties

I struggled with generating interesting enemy shapes that played well and looked natural. One of the

biggest difficulties was the legs - if two faces were in a right angle to each and both had legs, they would

intersect. A solution to this would be to either do a check on every neighbouring box to see if this

particular configuration exists, then remove the leg, or to order the outward faces by their distance

along the perimeter of the enemy. The latter would also help with even leg distribution, but is a problem

whose complexity is beyond the scope of this project for now.

Legs that spawn at right-angled faces can intersect each other when moving

http://dreamlo.com/


Another issue with the legs that plagued the entire development of the project is that beyond a certain

enemy speed the legs are just unable to catch up. I have some ideas on how to investigate this (I believe

it’s to do with the MoveTowards call in EnemyLeg.Update), but for now limiting the enemy’s movement

speed will have to suffice.

Legs will get stuck catching up if the enemy moves beyond a certain speed

QA and Optimisations

The advantage of having a limited feature set and few interacting systems is that most bugs were able to

appear naturally during development and could be fixed as and when they appeared. I did also leave the

last day of development as a specific QA and gameplay testing period, in which I was able to fix a couple

of minor bugs (mostly due to script execution order dependencies) and tune the balance of the enemies.

A handful of known bugs that emerged last minute do remain however, and I didn’t have time to fix:

● Enemies spawn off the edge of the map

● Enemies can spawn inside each other

This is because multiple enemies and a fixed map size was added fairly late in development, which could

have been avoided with a stronger QA consideration.

Extending the Code Base

● Board

○ Width/Height/Bomb count random instead of fixed

○ 2D array for grid instead of 1D

○ Made the _neighbours array static - as it’s the same for all Board objects this saves on

memory

○ Replace prefab instantiation as no longer using UI elements, moved this into Build

function

○ Move nearby danger text display out of Box and into BombIndicatorBlock

○ Change the hit callback from Button OnClick to bullet collision

● Box

○ Split the bomb number funtionality into a separate class, BombIndicatorBlock

● Game

○ Nothing could be reused from the game class, this is replaced with the GameService

singleton that handles scoring, game over etc.



Final Reflection

Overall I am pleased with how I managed my time on this project around working a full time job. Limiting

myself to weekends and the occasional weekday evening meant I could work on this project over and

extended period of time without burning myself out. Setting clearly defined goals and limiting the

mechanics I planned to implement definitely helped with this, and I am pleased to have been able to stick

to them without giving in to feature creep.

I am incredibly happy with how the game-feel turned out, I believe it feels tactile and responsive and

each action carries a clear visual and audible consequence. However, limiting my feature set does hinder

replayability as the gameplay loop can get repetitive after a while - something I tried to avoid with online

leaderboards to increase the game’s longevity.

If I was to spend more time on this project I would address the issues with enemy generation and add

support for more interesting and diverse shapes. I would also add more game mechanics such as health

pickups, player abilities, and enemies spawning in waves. I’m not particularly happy about the game

having no clear ending (you keep playing until you die), so that would also be something to implement.

Third Party/Premade Assets

● MADE Tommy Soft font by MadeType (https://www.dafont.com/made-tommy-soft.font)

● Polished Concrete, Staggered texture by Architextures (https://architextures.org/textures/163)

● 512 Sound Effects (8-bit style) by SubspaceAudio

(https://opengameart.org/content/512-sound-effects-8-bt-style)

● Game Music Loop - Rising by HorrorPen

(https://opengameart.org/content/game-music-loop-rising)

● Heroism by Edward J. Blakeley (https://opengameart.org/content/heroism)

https://www.dafont.com/made-tommy-soft.font
https://architextures.org/textures/163
https://opengameart.org/content/512-sound-effects-8-bit-style
https://opengameart.org/content/game-music-loop-rising
https://opengameart.org/content/heroism

